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Abstract

Source code on the web is a widely available and
potentially  rich  learning  resource  for  non-
programmers.  However,  unfamiliar  code  can  be
daunting  to  end-users  without  programming
experience.  This  paper  describes  the  results  of  an
exploratory  study  in  which  we  asked  non-
programmers to find and modify the code responsible
for specific functionality  within unfamiliar programs.
We  present  two  interacting  models  of  how  non-
programmers approach this problem: the Task Process
Model  and  the  Landmark-Mapping  model.  Using
these models, we describe code search strategies non-
programmers  employed  and  the  difficulties  they
encountered. Finally, we propose guidelines for future
programming  environments  that  support  non-
programmers  in  finding  functionality  in  unfamiliar
programs. 

1. Introduction

Some research predicts that as many as 25 million
US workers  will  perform  some job-related  computer
programming  tasks  in  2012  [27].   The  Bureau  of
Labor Statistics  expects  less  than  3 million  of these
workers  to  be  professional  programmers  [27] and
whether  all  these positions will  be filled by formally
trained  programmers  is  debatable  [4].  Hence  there
could  be  about  22  million  workers  programming
without  formal  training.  In  addition  to  the  large
community  of  workers  performing  some
programming,  there  are  rapidly  growing  user
communities  exploring  programming  in  home  or
recreational  contexts  (such  as  web  programmers
creating  mashups  [33]).  Many  of  these  users  lack
formal computer programming training and may want
to learn relevant new skills as needed. 

Suppose an  end-user  working  on  a  programming
task  has  an  idea  for  functionality  to  add  to  her
program. Currently, tutorials and examples written to
illustrate  specific concepts or techniques may be the

best learning  resources available to her.  Yet with the
rise in code repositories a much richer resource exists:
source  code  available  on  the  web.  Reading  and
understanding this source code may be difficult for an
end-user and near impossible for a non-programmer.

However,  a  person  can  determine  a  program’s
utility  by  observing  functionality  in  the  program’s
output (e.g., Javascript rollovers on a web page or an
Excel  macro  highlighting  unique  cells).  Suppose
instead of finding a tutorial or example program that
demonstrates how to achieve a particular goal, a user
could instead find a program that exhibited the desired
functionality and adapt the responsible code to fit his
or her context.

To  enable  non-programmers  to  select  and  learn
from  programs  they find  on  the  web we must  first
understand  how non-programmers  approach  finding
code responsible for an observed program behavior. 

This paper describes an exploratory study in which
non-programmers  were  asked  to  find,  and  in  some
cases  modify,  code  responsible  for  specific
functionality  within  unfamiliar  programs.  In
completing  the  code  search  tasks,  users  leveraged
landmarks,  verbally  identified  points  of  interest,  in
both the output and code. They used these landmarks
to  build  mappings between  code and  output  and  to
determine  code  relevance.  We describe  this  process
using two interacting models: the Task Process model
and  the  Landmark-Mapping  model.  Using  these
models, we contextualize the strategies and problems
non-programmers  encountered in  finding  responsible
code. Based on the  problems our users  encountered,
we  suggest  guidelines  for  designing  programming
environments  that  support  new  programmers  in
finding  particular  code  sections  in  unfamiliar
programs.

2. Related Work

We  have  related  work  in  several  areas:  Code
Navigation,  Code  Comprehension,  and  Novice
Debugging.  We are not aware of other  work focused
exclusively on code search by non-programmers.



2.1. Code Navigation

Code navigation studies the strategies programmers
use to find relevant areas of concern in code. Most of
this  research  focuses  on  professional  programmers.
Recent code navigation studies  [16],  [18] suggest the
navigation process users employ relates to Information
Foraging  theory  [24].  Information  Foraging  was
introduced in the context of web navigation and posits
when  we  search  for  information  we  rely  upon
“information  scent”  to  estimate  the  probability  of
finding relevant information by following a particular
link.  Other work hypothesizes a relationship between
code navigation and real  world spatial  navigation by
use  of  landmarks  [5].   Empirical  studies  suggest
systematic  navigation  practices promote task  success
[26], and that  users of different  genders may employ
different navigation strategies [8].

2.2. Code Comprehension

Code comprehension researches the mental models
programmers  use  to  represent  code  and  how  they
construct  these  models.  Studies  in  this  area  are
typically  concerned  with  memory  recall  of program
construction. Our work focuses on short-term program
comprehension  and  its  use  for  non-programmers  in
code  navigation.  Two  fundamental  code
comprehension  models  are  generally  accepted:  top-
down [2], where users work to relate program goals to
code,  and  bottom-up  [23],  where  users  focus  on
understanding code elements and then relate these to
program goals.  Other work suggests experts mix these
models in making inquiries [19], and opportunistically
choose a model [29].  

 Brooks [2] suggests beacons as stereotypical code
snippets  that  imply  a  specific,  larger  functionality
(e.g.,  a variable swap implies a sort  function) aiding
programmers  to  quickly identify common  functions.
Further work investigates the existence of beacons [1]
and suggests experts and novices do recognize a sort
beacon [30], [31], while others suggest novices do not
reliably detect beacons [6]. 

Beacons and landmarks (from code navigation) are
similar  concepts,  but  Cox  [5] distinguishes  them by
suggesting  “that  beacons  are  a  component  of  a
landmark”. For instance a big outdoor hamburger sign
may  indicate  a  restaurant.   The  sign  is  a  beacon
indicating the function of a building. Having found the
restaurant it can be used as a navigational landmark. 

Novice  code  comprehension  studies  observe  that
novices tend to read code sequentially, line by line, in
a  bottom-up  fashion  that  ignores  control  flow
information [3], [10], [22].  Other research posits that
novices’  comprehension  strategies  differ  with
familiarity  and  domain  knowledge  [17],  [32].  Some

work  suggests  that  fixing  a  novice’s  navigation
strategy  does  not  significantly  impact  their
comprehension [21].

2.3. Novice Debugging

Novice code debugging  investigates  the  strategies
employed  and  weaknesses  exhibited  by  novices  in
attempting  debugging  tasks.  Novice  debugging
research  focuses  on  users  who  have  a  working
knowledge  of programming  models  (e.g.,  sequential
execution)  and  program  construction.  While  still
novices they are more skilled than non-programmers.
McCauley et al. [20] provide a recent area survey. 

Katz and Anderson  [11] studied novice debugging
and  observed  two general  search  strategies:  forward
reasoning,  where  “search  stems  from  the  actual,
written code”, and backward reasoning, where “search
starts from incorrect  behavior of the program”.   One
example of a backward reasoning  strategy is “simple
mapping” where a novice tries to correlate a specific
output  result  to  a  line  of  code.  Other  debugging
strategy  research  identifies  more  general  strategies
such  as  mental  tracing  and  hand  execution  [9] and
end-user  strategies  for  spreadsheet  debugging  [13],
[25], [28].

Ko and Myers  [14] observed end-users inclination
towards  interrogative  debugging  and  created  the
WhyLine interface to support it [15].

3. Methods

We conducted  an  exploratory  study in  which  we
asked  non-programmers  to  identify  and,  in  some
cases,  modify  code  responsible  for  specific
functionality  in  the  program  output  in  unfamiliar
programs.

3.1. Storytelling Alice

For  this  study  we  used  the  Storytelling  Alice
programming  environment  [12].   Storytelling  Alice
allows users to create interactive 3D animated stories
by writing programs that invoke methods (e.g., turn,
say,  walk)  on  objects  (e.g.  fairies,  trees,  people).
Storytelling  Alice  users  construct  programs  using  a
drag-and-drop  interface  that  prevents  syntax  errors.
The  environment  supports  most  programming
constructs taught to beginning programmers. Figure 1
illustrates adding a line of code in Storytelling Alice.

3.2. Instruments

To  better  understand  the  properties  of  programs
users  are  likely  to  find  on  the  web,  we  randomly
selected 15 programs submitted to the Alice.org user



forums for  review.  Based  on  the  properties  of these
programs  and  informal  observations  of  beginning
programmers  searching  through  unfamiliar  code, we
constructed four Storytelling Alice programs that vary
along several dimensions:
• Dialog vs. No Dialog: Pilot users focused on dialog

as a unique marker in the code, but dialog was not
present in all the selected programs.

• Descriptive vs. Ambiguous Object/Method Names:
The selected programs often used poorly chosen or
misleading names for methods and objects.

Table 1. A description of the four programs used in the tasks and their properties

Program Name: Description Dialog Object/Method
Names

Fish  World:  three fish swim around  and
make motions at one another

No Descriptive

Woods World: creatures argue about teddy
bear,  three  main  methods  concurrently
execute

Yes Descriptive

Magic  Trees:  two  kids  discover  fairies
hidden in trees, large main code block

Yes Ambiguous

Race World: two students race, winner is
randomly determined, user throws bananas

Yes Ambiguous

• Long vs.  Short  Programs:  The  selected programs
ranged in length from 25 lines to over 300 lines.

• Modular  vs.  Long  Code  Blocks:  Some  Alice
programs  divided  code into  appropriate  methods
while others  had  long code blocks that  contained
repeated code sections. 

• More  Concurrent  Execution  vs.  Less  Concurrent
Execution:  Many pilot  users  relied  on  sequential
execution  in  searching  for  actions  and  struggled
with  actions  occurring  simultaneously.  However,
all  of  the  selected  programs  used  concurrency.
Concurrency  use  ranged  from  a  few concurrent
statements to at least 35 concurrent threads. 

• Interactivity vs. Passivity: Some selected programs
contained  interactive elements  built  using  events;
others were non-interactive stories or animations. 

We describe our four programs and their placement
in these dimensions in Table 1. We constructed a series
of five tasks of varying complexity for each program. 

3.3. Study Sessions

The  study  took  place  in  single,  two-hour  long
sessions.  At  the  beginning  of a  session,  participants
filled  out  a  short  survey  about  their  computing
experience  and  completed  the  in-software  tutorial
provided  with  Storytelling  Alice.  The  in-software
tutorial includes three chapters that introduce users to
navigation, program construction and editing, creation
of user methods, and the use of events.

 
3.3.1.  Study  Task  Types.  The  study  included  two

types  of  tasks:  bounding tasks  and
modification tasks.  

Bounding tasks  required  participants  to mark  the
beginning  and  end  of  the  code  responsible  for  the
functionality identified in the video. We refer to these
markers  as  beginning  bounds and  ending  bounds.
This  type of task  simulates  a  user  who has  found a
program with an interesting feature and wants to find
the code that implements that feature. 

Modification tasks ask participants to make a very
specific  change  to  the  code  which  affects  the
functionality  as  indicated  to  the  user.   Modification
task  videos  included  titles  indicating  that  the  task
requires a modification and showing the initial output,
an  intentionally  minimal  description  of  what  to
change, and the target output.

To avoid providing linguistic cues that  might bias
participants’  search  strategies,  we  presented  tasks
using short video clips of a given program’s output. In
each video, we highlighted target object(s) and actions
using  a  red  box.  We faded  all  other  objects  in  the
world.  

 
3.3.2.  Task  Completion.  To  ensure  participants

understood bounding  and  modification  tasks
we asked each subject to complete one task of
each  type  in  a  practice  Storytelling  Alice
program.  After  completing  the  two practice
tasks,  participants  completed  a  series  of
experimental  tasks.  We  generated  the  task
series by randomizing the presentation order
of the  four  programs  and  the  five tasks  for
each  program.  The  randomization  was
intended to prevent any ordering effects. Each
participant completed as many tasks as he or
she  could  during  the  allotted  time  for  the
study. 

For both the bounding and modification tasks, the
target  sections  of code were embedded within  much
larger  programs.  Participants  searched  through  the
code  and  watched  both  the  video  and  the  running

Figure 1. Storytelling Alice where a user programs by 
(1) dragging a method, (2) dropping it into the code 
pane, and (3) selecting parameters.



program  to identify target  actions  to  search  for.  We
asked  participants  to  think  aloud  while  completing
these tasks. 

3.4. Data

We  collected  a  pre-study  demographics  and
computer  experience  survey,  video  recordings  of
participants  as  they  used  Storytelling  Alice,  screen
captures of participants’ Storytelling Alice interactions
and participants’ modified programs.  

3.5. Participants

Fourteen adults (university students or employees)
participated  in  the  study.  Twelve  had  no  prior
programming  experience.  Two  participants  had
previous  exposure  to  programming,  one  “at  least  5
years ago” and  the other  more than  20 years before.
Participants  reported  using  computers  an  average  of
23  hours  per  week.  Participants  primarily  used  web
browsers, email, and office productivity applications.

3.6. Analysis

The two authors independently coded each session
video.  The coding  scheme consisted  of two types of
information: searches, and landmarks.

3.6.1.  Searches. For  each  search,  we  coded
beginning and ending times for the search,
the  search  space  and  the  participants’
search target. Searches could occur in four
spaces: the video, the running program, the
Storytelling  Alice  code  pane,  and  other
Storytelling  Alice  panes  (e.g.  object  tree,
object details, events).

3.6.2.  Landmarks. As  users  searched  for  specific
functionality  within  an  unfamiliar
program,  they  often  verbally  referenced
specific features in the output (the video or
running  program)  or  the  program  itself
(code pane or other panes). For example, a
participant might say, “The fish gets bigger
and turns” while watching the output. We
call these features landmarks as suggested
by Cox  [5] because the verbalizations are
often coupled with code navigational logic
(e.g.,  "The  fish  spins  before  he  turns  to
face the camera"). 

For  each  landmark,  we  coded  the  landmark
content,  the  data  type (e.g.,  object,  action,  text)  and
the  source  (video,  running  program,  code  pane  or
other  panes).   Additionally,  we  recorded  a  specific
reason  for  the  usage of each  landmark.  A landmark
might be used as a temporal comparison or identified

as  included  in  or  excluded  from  the  participant’s
search target. This landmark record gives insight into
the  information  used by subjects in  search  and  how
that information is used to find responsible code.

3.6.3.  Other  Data.  We  also  transcribed
participants’  statements  about  their
progress or mental  models and noted any
solutions they generated. 

3.7 Error Analysis

To  ensure  coding  consistency,  the  two  authors
independently coded two 10  minute  sections  of two
user  sessions.   The  authors  reviewed the  codings  to
establish  coding  guidelines  and  then  independently
coded  all  the  remaining  sessions.  The  completed
codings have an 82% agreement rate.  

4. Results

Finding  target  code in  an  unfamiliar  program  is
difficult  for  non-programmers.  Overall,  participants
generated correct solutions for only 41% of their tasks
(33%  of  bounding  tasks  and  72%  of  modification
tasks).  Participants  completing  modification  tasks
frequently  tested  and  changed  their  answers  which
contributed to their greater success. Some participants
spent more than twenty minutes on a single task.

We  present  two  models  that  describe  how  non-
programmers  approach  finding  target  code  in
unfamiliar  programs.  The  Task  Process  model  (see
Figure  2)  represents  the  task  workflow participants
used  when  attempting  a  task.  To  account  for  the
information  created  and  used by subjects during  the
Task  Process  model,  we  created  the  Landmark-
Mapping  model (see Figure  3).  This  model contains
both  code  landmarks  and  output  landmarks.  As
participants  work  through  tasks,  they  develop
mappings between code and output landmarks. 



4.1. Task Process Model Section (1)

The Task Process model is broken into a series of
numbered transitions (see Figure 2).

Participants  began  a  task  along  path  (1)  by
watching  the  task  video.  While  watching  the  task
video for the first time, 45% of the time participants
verbally  noted  video  landmarks  (e.g.,  “the  centaur
turns” or she says ‘Thank you, I’m free’”).  Denoting
these  landmarks  added  them  to  the  participant’s
output  landmark  set as  indicated  in  the  Landmark-
Mapping model.

Two common failures can  be seeded in  this  early
section.  

Object  and  Action  Encoding (12/14  users,  12/20
tasks):  When a user identifies a landmark,  he or she
encodes that landmark using a description (e.g., “[the
pig is] pointing at the cage” or “[the] pig raise’s his]
right  arm”).   When users search  for these actions in
the code, they often do so by looking for key phrases
such as “pointing” or “right arm”. If they fail to find
these phrases the search is never resolved. 

Memory  Failure (7/14  users,  8/20  tasks):
Sometimes a participant misremembers actions in the
video.  This can lead the participant to incorrectly use
landmarks. 

4.2. Task Process Model Section (2)

Having registered a  landmark  or  landmarks  from
the initial  video viewing,  participants  transitioned to
program code and began a “Code Search”. In 72% of
initial  code  searches  participants  verbalized  a
landmark  as the search target.  As they navigated the
code,  57% of participants  identified  additional  code
landmarks to  search  for  in  the  task  video  or  the
running  program.  These code landmarks were added
to the  code landmark set in  the Landmark-Mapping
model.  When  participants  successfully  identified  a
code section they believed accounted for a landmark,
they  formed  a  mapping [11].  In  the  Landmark-
Mapping  model  mappings  are  in  the  intersection  of
the output landmark and code landmark sets.  

Participants  cycled  between  “Code  Search”  and
“Output  Search”  while  adding  to  and  refining  their
landmarks  and  mappings  until  they  had  enough
mappings to generate  a  solution.   As the size of the
landmark  sets  grow,  participants  may  begin  to
organize  them  into  subsets.  Participants  designated
20% of actions as occurring before or after an existing
landmark to include or exclude them from searches. In
the  Landmark-Mapping  model,  they are  denoted  as
excluded and included landmark subsets.

In  this  Task  Process  model  section,  participants
often used the following strategies to build mappings:

Text  and  Semantic  Search (14/14  users,  20/20
tasks, 20% of searches): In a text and semantic search,
the participant has identified a target and is scanning
either for specific text or for text semantically similar
to  their  target.  This  type  of  search  frequently  fails
when the participant cannot reconcile their description
of  the  landmark  (e.g.  “[the  pig  is]  pointing  at  the
cage”) with a specific line or lines of code. 

Temporal Search (14/14 users, 19/20 tasks, 14% of
searches):  A  temporal  search  occurs  when  a
participant uses temporal information to reason about
where  the  functionality  identified  in  the  video  is
located  relative  to  another  landmark.  This  can  help
users to narrow the code search space. For instance, in

Figure 2. The Task Process Model represents the typical task workflow when a subject attempted a task.  The 
model is broken into five transition sections indicated by the numbers in parenthesis.

Figure 3. The Landmark-Mapping Model organizes 
landmarks identified by subjects into two sets that 
correspond to landmark identification space. 



the statement "So it's gotta be somewhere in the part
where basketball3 is front of her, before [Melly]
turns”  the  participant  identifies  two landmarks  and
uses  them  to  reason  about  where  the  functionality
identified in the video should lie.

Comprehensive  Search (14/14  users,  17/20  tasks,
7% of searches):  Participants’ focus can switch from
global to local when they identify a mapping with high
confidence. Comprehensive searches typically occur in
a small code section anchored on a specific landmark
that  is part  of a  mapping.  If the participant  believes
that the anchor landmark is relevant to the solution he
or she may use this strategy to find more supportive
temporal landmarks. If the participant does not believe
the anchor is relevant, he or she can use the strategy to
exclude the current  region from the solution.  In  one
comprehensive  search,  a  participant  began  by
identifying an anchor: “So I'm looking for  Dewdrop
Willowwind.  So  here's  Dewdrop Willowwind
turning  to  face  the  camera.”  Next,  the  participant
maps nearby lines of code: “And [CordFlamewand]
turn to face the camera. They turn to face the camera
and then they all move forward.  So this is the moving
forward thing  [in  the video].”  This second mapping
helped the participant validate the original mapping.

Exhaustive Search (11/14 users, 10/20 tasks, 2% of
searches):  If  the  previously  discussed  strategies  are
unsuccessful, participants  may turn  to less structured
and more desperate strategies. In an exhaustive search
the  participant  searches  the  entire  recognized  code
space (note: participants may not search some method
implementations  because they do not  recognize  they
can). We observed two stages of exhaustive search.  In
the first stage, participants search any editable method
associated  with  a  target  character.  Failing  the  first
stage,  a  participant  searches  all  editable  methods
available  regardless  of  whether  they  relate  to  any
landmarks or targets they are looking to find.

Not all search strategies are intended to generate a
solution.   Two  common  fallback  strategies  are
intended  to  generate  more  potential  search  targets.
API Search (7/14 users,  8/20 tasks,  1% of searches)
occurs when a participant selects an object and scans
that  object’s  list  of methods  to  identify  new search
targets similar to their landmarks.  Explorative Search
(8/14 users, 8/20 tasks, 3% of searches) is a last resort
search in which participants appear to randomly click
through  the  interface.  Sometimes  these  random
explorations  lead  the  participant  to  a  piece  of
information that helps the participant formulate a new
(productive) search.

 
4.3. Task Process Model Section (3)

The  process  of cycling  between  code and  output
searches  continued  until  a  subject  believed  their

mappings  correctly  identified  a  reasonable  approx-
imation of the responsible code region. As previously
indicated, most solutions are incorrect. Although there
are many reasons for incorrect solutions, three failures
appear frequently in this Task Process Model section: 

Method  Interpretation (13/14  users,  12/20  tasks):
Participants’ abilities  to form correct  mappings  were
fundamentally  tied  to  their  interpretations  of  a
method’s behavior given its name and parameters.  A
method can  provide too many cues,  too few cues or
inappropriate  cues  about  its  function.  Missing  or
misleading  cues  may  cause  a  participant  to
inappropriately store  a  landmark  in  the  included  or
excluded  set  of  the  Landmark-Mapping  model.
Engebretson and Wiedenbeck call methods’ ability to
express their functionality role-expressiveness [7].

 Lack of  Temporal Reasoning (10/14 users,  10/20
tasks):  Failure  to  use  temporal  reasoning  can  cause
participants to search more code than necessary. They
may also fail to utilize operations that can increase the
size of their excluded landmark sets (thus reducing the
number  of landmarks  to  map).  By searching  excess
code and  keeping  irrelevant  landmarks,  participants
may create false mappings.  Finally, without temporal
reasoning a subject may not identify nearby landmarks
to verify the correctness of their initial mappings. 

Temporal  Reasoning  Overuse  and  Ignoring
Constructs (13/14  users,  12/20  tasks):  Temporal
reasoning  cannot  be  naively  applied  to  programs
containing  constructs  such  as  loops  and  concurrent
blocks  or  multiple  threads  of  execution.  Failure  to
recognize  the  changing  execution  model  caused
participants to arrive at faulty solutions by incorrectly
placing landmarks and mappings into the excluded or
included sets of the Landmark-Mapping model.

4.4. Task Process Model Section (4)

For  a  bounding  task,  finding  a  solution  required
mappings for the first and last action observed hence
the transitions back from “Solution”  to either  “Code
Search” or “Output search”.  Additionally, participants
frequently verified modification task solutions leading
to a higher success rate for modification tasks.  

4.5. Task Process Model Section (5)

Not all searches or series of searches led to a clear
solution.  In response to finding no mappings to their
landmarks,  some  subjects  turned  to  Context  Search
(9/14 users, 8/20 tasks, 1% of searches).  In a context
search, the participant searches the output for actions
happening  shortly  before  or  after  the  target
functionality. In one case, a participant  stated “I was
just gonna look again and see…what part in the movie
corresponds  to  …where  the  Horse is  highlighted.”



The participant then identified landmarks immediately
before and after the indicated functionality.

Context  search  usage  occasionally gave  rise  to  a
common  failure  we  call  Magic  Code (7/14  users,
15/20 tasks). Many participants correctly mapped the
temporally  related  landmarks  identified  through
context  search.  However,  participants  then  failed  to
find  the  original  target  near  these  newly  identified
mappings and concluding:  “it is in there,  but I can’t
see it”. This conclusion produces an incomplete set of
mappings  as  users  may not  have  mapped  the  target
functionality.

4.6. Relationship to Other Models

Ko et  al.  [16] studied  expert  navigation  in  code
maintenance  tasks.   They propose a model in  which
developers search for relevant task information, relate
this information to previous knowledge to decide their
next step, and continue collecting relevant information
until  they  feel  they  have  enough  information  to
implement a solution. Although Ko’s model applies to
expert  programmers,  we  have  found  that  non-
programmers  use  a  similar  high-level  process.  We
expand  on  the  task  process  by  suggesting  the
Landmark-Mapping  model  as  an  abstraction  to
describe how non-programmers  collect  and  organize
the information they use to complete their task.  

5. Discussion and Conclusions

Insight into how non-programmers search code can
inform the design of programming environments that
support  users  in  utilizing  and  learning  from  found
code. While this study focused on participants using
Storytelling  Alice,  we believe  the  model,  strategies,
and  failures  discussed  apply  to  other  domains.  In
particularly domains where most program execution is
externally  observable  such  as  web  sites,  user
interfaces,  and  scriptable  media  authoring
environments.  To  this  end,  we  offer  the  following
design guidelines.

5.1. Connect code to observable output 

When  users  search  code  for  an  observed
functionality it is essential to help them interpret code
in terms of the observed functionality. We could have
alleviated our participants’ struggles with interpreting
code could by showing how the output changed when
a line of code executed. To support arbitrary code use
by non-programmers, we need to explore how best to
provide support in the programming environment that
enables users to correctly and quickly form mappings
between the code and output.

5.2. Help users reconstruct execution flow

When  our  participants  encountered  programs
containing programming constructs such as loops, do
togethers  and  method  calls,  they  tended  to  either
interpret  all  statements  as  executing  sequentially  or
declare  the  execution  flow  incomprehensible.
Enabling users to correctly reason about the execution
flow  can  help  them  to  employ  temporal  reasoning
effectively.   This  has  the  potential  to  drastically
improve users search efficiency. Often students learn
new  vocabulary  words  through  contextual  clues  as
they  read.  As  non-programmers  explore  unfamiliar
code,  there  is  an  opportunity  for  programming
environments  to  scaffold  users’ mental  models  and
reasoning  about  unfamiliar  programming constructs’
behavior.

5.3. Provide interactions to fully navigate code

Participants  in  our  study  frequently  struggled  to
find  all  code  relevant  to  a  particular  search.
Incomplete  exhaustive  searches  and  participants’
magic code creation provide evidence of this struggle.
Lacking  code  navigation  affordances  is  particularly
disabling  when users  will  be utilizing  code they did
not create. 

5.4 Help users use poorly constructed code

Programming  environments  have no  control  over
the properties of code users find on the internet. Yet,
lacking  other  supports,  the  structure  and  clarity  of
code users download can have a profound impact on
their  success.  Programming  environments  enabling
non-programmers to utilize unfamiliar code must help
overcome difficulties associated with poorly designed
and  written  code.  With  an  understanding  of typical
usability problems in user created code, we can build
supports  into  programming  environments  that  help
users  to  successfully  navigate  imperfect  code.  Users
are  particularly  affected  by  poorly  chosen  method
names. Interfaces enabling users to view details about
a method’s behavior at the point where that method is
invoked can increase the method’s information scent
and help users decide to explore it or not. 
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