
Non-programmers Identifying Functionality in Unfamiliar Code: Strategies
and Barriers

Paul Gross and Caitlin Kelleher
Department of Computer Science and Engineering – Washington University in St. Louis

grosspa@cse.wustl.edu, ckelleher@cse.wustl.edu

Abstract

Source code on the web is a widely available and
potentially rich learning resource for non-
programmers. However, unfamiliar code can be
daunting to end-users without programming
experience. This paper describes the results of an
exploratory study in which we asked non-
programmers to find and modify the code responsible
for specific functionality within unfamiliar programs.
We present two interacting models of how non-
programmers approach this problem: the Task Process
Model and the Landmark-Mapping model. Using
these models, we describe code search strategies non-
programmers employed and the difficulties they
encountered. Finally, we propose guidelines for future
programming environments that support non-
programmers in finding functionality in unfamiliar
programs.

1. Introduction

Some research predicts that as many as 25 million
US workers will perform some job-related computer
programming tasks in 2012 [27]. The Bureau of
Labor Statistics expects less than 3 million of these
workers to be professional programmers [27] and
whether all these positions will be filled by formally
trained programmers is debatable [4]. Hence there
could be about 22 million workers programming
without formal training. In addition to the large
community of workers performing some
programming, there are rapidly growing user
communities exploring programming in home or
recreational contexts (such as web programmers
creating mashups [33]). Many of these users lack
formal computer programming training and may want
to learn relevant new skills as needed.

Suppose an end-user working on a programming
task has an idea for functionality to add to her
program. Currently, tutorials and examples written to
illustrate specific concepts or techniques may be the

best learning resources available to her. Yet with the
rise in code repositories a much richer resource exists:
source code available on the web. Reading and
understanding this source code may be difficult for an
end-user and near impossible for a non-programmer.

However, a person can determine a program’s
utility by observing functionality in the program’s
output (e.g., Javascript rollovers on a web page or an
Excel macro highlighting unique cells). Suppose
instead of finding a tutorial or example program that
demonstrates how to achieve a particular goal, a user
could instead find a program that exhibited the desired
functionality and adapt the responsible code to fit his
or her context.

To enable non-programmers to select and learn
from programs they find on the web we must first
understand how non-programmers approach finding
code responsible for an observed program behavior.

This paper describes an exploratory study in which
non-programmers were asked to find, and in some
cases modify, code responsible for specific
functionality within unfamiliar programs. In
completing the code search tasks, users leveraged
landmarks, verbally identified points of interest, in
both the output and code. They used these landmarks
to build mappings between code and output and to
determine code relevance. We describe this process
using two interacting models: the Task Process model
and the Landmark-Mapping model. Using these
models, we contextualize the strategies and problems
non-programmers encountered in finding responsible
code. Based on the problems our users encountered,
we suggest guidelines for designing programming
environments that support new programmers in
finding particular code sections in unfamiliar
programs.

2. Related Work

We have related work in several areas: Code
Navigation, Code Comprehension, and Novice
Debugging. We are not aware of other work focused
exclusively on code search by non-programmers.

2.1. Code Navigation

Code navigation studies the strategies programmers
use to find relevant areas of concern in code. Most of
this research focuses on professional programmers.
Recent code navigation studies [16], [18] suggest the
navigation process users employ relates to Information
Foraging theory [24]. Information Foraging was
introduced in the context of web navigation and posits
when we search for information we rely upon
“information scent” to estimate the probability of
finding relevant information by following a particular
link. Other work hypothesizes a relationship between
code navigation and real world spatial navigation by
use of landmarks [5]. Empirical studies suggest
systematic navigation practices promote task success
[26], and that users of different genders may employ
different navigation strategies [8].

2.2. Code Comprehension

Code comprehension researches the mental models
programmers use to represent code and how they
construct these models. Studies in this area are
typically concerned with memory recall of program
construction. Our work focuses on short-term program
comprehension and its use for non-programmers in
code navigation. Two fundamental code
comprehension models are generally accepted: top-
down [2], where users work to relate program goals to
code, and bottom-up [23], where users focus on
understanding code elements and then relate these to
program goals. Other work suggests experts mix these
models in making inquiries [19], and opportunistically
choose a model [29].

 Brooks [2] suggests beacons as stereotypical code
snippets that imply a specific, larger functionality
(e.g., a variable swap implies a sort function) aiding
programmers to quickly identify common functions.
Further work investigates the existence of beacons [1]
and suggests experts and novices do recognize a sort
beacon [30], [31], while others suggest novices do not
reliably detect beacons [6].

Beacons and landmarks (from code navigation) are
similar concepts, but Cox [5] distinguishes them by
suggesting “that beacons are a component of a
landmark”. For instance a big outdoor hamburger sign
may indicate a restaurant. The sign is a beacon
indicating the function of a building. Having found the
restaurant it can be used as a navigational landmark.

Novice code comprehension studies observe that
novices tend to read code sequentially, line by line, in
a bottom-up fashion that ignores control flow
information [3], [10], [22]. Other research posits that
novices’ comprehension strategies differ with
familiarity and domain knowledge [17], [32]. Some

work suggests that fixing a novice’s navigation
strategy does not significantly impact their
comprehension [21].

2.3. Novice Debugging

Novice code debugging investigates the strategies
employed and weaknesses exhibited by novices in
attempting debugging tasks. Novice debugging
research focuses on users who have a working
knowledge of programming models (e.g., sequential
execution) and program construction. While still
novices they are more skilled than non-programmers.
McCauley et al. [20] provide a recent area survey.

Katz and Anderson [11] studied novice debugging
and observed two general search strategies: forward
reasoning, where “search stems from the actual,
written code”, and backward reasoning, where “search
starts from incorrect behavior of the program”. One
example of a backward reasoning strategy is “simple
mapping” where a novice tries to correlate a specific
output result to a line of code. Other debugging
strategy research identifies more general strategies
such as mental tracing and hand execution [9] and
end-user strategies for spreadsheet debugging [13],
[25], [28].

Ko and Myers [14] observed end-users inclination
towards interrogative debugging and created the
WhyLine interface to support it [15].

3. Methods

We conducted an exploratory study in which we
asked non-programmers to identify and, in some
cases, modify code responsible for specific
functionality in the program output in unfamiliar
programs.

3.1. Storytelling Alice

For this study we used the Storytelling Alice
programming environment [12]. Storytelling Alice
allows users to create interactive 3D animated stories
by writing programs that invoke methods (e.g., turn,
say, walk) on objects (e.g. fairies, trees, people).
Storytelling Alice users construct programs using a
drag-and-drop interface that prevents syntax errors.
The environment supports most programming
constructs taught to beginning programmers. Figure 1
illustrates adding a line of code in Storytelling Alice.

3.2. Instruments

To better understand the properties of programs
users are likely to find on the web, we randomly
selected 15 programs submitted to the Alice.org user

forums for review. Based on the properties of these
programs and informal observations of beginning
programmers searching through unfamiliar code, we
constructed four Storytelling Alice programs that vary
along several dimensions:
• Dialog vs. No Dialog: Pilot users focused on dialog

as a unique marker in the code, but dialog was not
present in all the selected programs.

• Descriptive vs. Ambiguous Object/Method Names:
The selected programs often used poorly chosen or
misleading names for methods and objects.

Table 1. A description of the four programs used in the tasks and their properties

Program Name: Description Dialog Object/Method
Names

Fish World: three fish swim around and
make motions at one another

No Descriptive

Woods World: creatures argue about teddy
bear, three main methods concurrently
execute

Yes Descriptive

Magic Trees: two kids discover fairies
hidden in trees, large main code block

Yes Ambiguous

Race World: two students race, winner is
randomly determined, user throws bananas

Yes Ambiguous

• Long vs. Short Programs: The selected programs
ranged in length from 25 lines to over 300 lines.

• Modular vs. Long Code Blocks: Some Alice
programs divided code into appropriate methods
while others had long code blocks that contained
repeated code sections.

• More Concurrent Execution vs. Less Concurrent
Execution: Many pilot users relied on sequential
execution in searching for actions and struggled
with actions occurring simultaneously. However,
all of the selected programs used concurrency.
Concurrency use ranged from a few concurrent
statements to at least 35 concurrent threads.

• Interactivity vs. Passivity: Some selected programs
contained interactive elements built using events;
others were non-interactive stories or animations.

We describe our four programs and their placement
in these dimensions in Table 1. We constructed a series
of five tasks of varying complexity for each program.

3.3. Study Sessions

The study took place in single, two-hour long
sessions. At the beginning of a session, participants
filled out a short survey about their computing
experience and completed the in-software tutorial
provided with Storytelling Alice. The in-software
tutorial includes three chapters that introduce users to
navigation, program construction and editing, creation
of user methods, and the use of events.

3.3.1. Study Task Types. The study included two

types of tasks: bounding tasks and
modification tasks.

Bounding tasks required participants to mark the
beginning and end of the code responsible for the
functionality identified in the video. We refer to these
markers as beginning bounds and ending bounds.
This type of task simulates a user who has found a
program with an interesting feature and wants to find
the code that implements that feature.

Modification tasks ask participants to make a very
specific change to the code which affects the
functionality as indicated to the user. Modification
task videos included titles indicating that the task
requires a modification and showing the initial output,
an intentionally minimal description of what to
change, and the target output.

To avoid providing linguistic cues that might bias
participants’ search strategies, we presented tasks
using short video clips of a given program’s output. In
each video, we highlighted target object(s) and actions
using a red box. We faded all other objects in the
world.

3.3.2. Task Completion. To ensure participants

understood bounding and modification tasks
we asked each subject to complete one task of
each type in a practice Storytelling Alice
program. After completing the two practice
tasks, participants completed a series of
experimental tasks. We generated the task
series by randomizing the presentation order
of the four programs and the five tasks for
each program. The randomization was
intended to prevent any ordering effects. Each
participant completed as many tasks as he or
she could during the allotted time for the
study.

For both the bounding and modification tasks, the
target sections of code were embedded within much
larger programs. Participants searched through the
code and watched both the video and the running

Figure 1. Storytelling Alice where a user programs by
(1) dragging a method, (2) dropping it into the code
pane, and (3) selecting parameters.

program to identify target actions to search for. We
asked participants to think aloud while completing
these tasks.

3.4. Data

We collected a pre-study demographics and
computer experience survey, video recordings of
participants as they used Storytelling Alice, screen
captures of participants’ Storytelling Alice interactions
and participants’ modified programs.

3.5. Participants

Fourteen adults (university students or employees)
participated in the study. Twelve had no prior
programming experience. Two participants had
previous exposure to programming, one “at least 5
years ago” and the other more than 20 years before.
Participants reported using computers an average of
23 hours per week. Participants primarily used web
browsers, email, and office productivity applications.

3.6. Analysis

The two authors independently coded each session
video. The coding scheme consisted of two types of
information: searches, and landmarks.

3.6.1. Searches. For each search, we coded
beginning and ending times for the search,
the search space and the participants’
search target. Searches could occur in four
spaces: the video, the running program, the
Storytelling Alice code pane, and other
Storytelling Alice panes (e.g. object tree,
object details, events).

3.6.2. Landmarks. As users searched for specific
functionality within an unfamiliar
program, they often verbally referenced
specific features in the output (the video or
running program) or the program itself
(code pane or other panes). For example, a
participant might say, “The fish gets bigger
and turns” while watching the output. We
call these features landmarks as suggested
by Cox [5] because the verbalizations are
often coupled with code navigational logic
(e.g., "The fish spins before he turns to
face the camera").

For each landmark, we coded the landmark
content, the data type (e.g., object, action, text) and
the source (video, running program, code pane or
other panes). Additionally, we recorded a specific
reason for the usage of each landmark. A landmark
might be used as a temporal comparison or identified

as included in or excluded from the participant’s
search target. This landmark record gives insight into
the information used by subjects in search and how
that information is used to find responsible code.

3.6.3. Other Data. We also transcribed
participants’ statements about their
progress or mental models and noted any
solutions they generated.

3.7 Error Analysis

To ensure coding consistency, the two authors
independently coded two 10 minute sections of two
user sessions. The authors reviewed the codings to
establish coding guidelines and then independently
coded all the remaining sessions. The completed
codings have an 82% agreement rate.

4. Results

Finding target code in an unfamiliar program is
difficult for non-programmers. Overall, participants
generated correct solutions for only 41% of their tasks
(33% of bounding tasks and 72% of modification
tasks). Participants completing modification tasks
frequently tested and changed their answers which
contributed to their greater success. Some participants
spent more than twenty minutes on a single task.

We present two models that describe how non-
programmers approach finding target code in
unfamiliar programs. The Task Process model (see
Figure 2) represents the task workflow participants
used when attempting a task. To account for the
information created and used by subjects during the
Task Process model, we created the Landmark-
Mapping model (see Figure 3). This model contains
both code landmarks and output landmarks. As
participants work through tasks, they develop
mappings between code and output landmarks.

4.1. Task Process Model Section (1)

The Task Process model is broken into a series of
numbered transitions (see Figure 2).

Participants began a task along path (1) by
watching the task video. While watching the task
video for the first time, 45% of the time participants
verbally noted video landmarks (e.g., “the centaur
turns” or she says ‘Thank you, I’m free’”). Denoting
these landmarks added them to the participant’s
output landmark set as indicated in the Landmark-
Mapping model.

Two common failures can be seeded in this early
section.

Object and Action Encoding (12/14 users, 12/20
tasks): When a user identifies a landmark, he or she
encodes that landmark using a description (e.g., “[the
pig is] pointing at the cage” or “[the] pig raise’s his]
right arm”). When users search for these actions in
the code, they often do so by looking for key phrases
such as “pointing” or “right arm”. If they fail to find
these phrases the search is never resolved.

Memory Failure (7/14 users, 8/20 tasks):
Sometimes a participant misremembers actions in the
video. This can lead the participant to incorrectly use
landmarks.

4.2. Task Process Model Section (2)

Having registered a landmark or landmarks from
the initial video viewing, participants transitioned to
program code and began a “Code Search”. In 72% of
initial code searches participants verbalized a
landmark as the search target. As they navigated the
code, 57% of participants identified additional code
landmarks to search for in the task video or the
running program. These code landmarks were added
to the code landmark set in the Landmark-Mapping
model. When participants successfully identified a
code section they believed accounted for a landmark,
they formed a mapping [11]. In the Landmark-
Mapping model mappings are in the intersection of
the output landmark and code landmark sets.

Participants cycled between “Code Search” and
“Output Search” while adding to and refining their
landmarks and mappings until they had enough
mappings to generate a solution. As the size of the
landmark sets grow, participants may begin to
organize them into subsets. Participants designated
20% of actions as occurring before or after an existing
landmark to include or exclude them from searches. In
the Landmark-Mapping model, they are denoted as
excluded and included landmark subsets.

In this Task Process model section, participants
often used the following strategies to build mappings:

Text and Semantic Search (14/14 users, 20/20
tasks, 20% of searches): In a text and semantic search,
the participant has identified a target and is scanning
either for specific text or for text semantically similar
to their target. This type of search frequently fails
when the participant cannot reconcile their description
of the landmark (e.g. “[the pig is] pointing at the
cage”) with a specific line or lines of code.

Temporal Search (14/14 users, 19/20 tasks, 14% of
searches): A temporal search occurs when a
participant uses temporal information to reason about
where the functionality identified in the video is
located relative to another landmark. This can help
users to narrow the code search space. For instance, in

Figure 2. The Task Process Model represents the typical task workflow when a subject attempted a task. The
model is broken into five transition sections indicated by the numbers in parenthesis.

Figure 3. The Landmark-Mapping Model organizes
landmarks identified by subjects into two sets that
correspond to landmark identification space.

the statement "So it's gotta be somewhere in the part
where basketball3 is front of her, before [Melly]
turns” the participant identifies two landmarks and
uses them to reason about where the functionality
identified in the video should lie.

Comprehensive Search (14/14 users, 17/20 tasks,
7% of searches): Participants’ focus can switch from
global to local when they identify a mapping with high
confidence. Comprehensive searches typically occur in
a small code section anchored on a specific landmark
that is part of a mapping. If the participant believes
that the anchor landmark is relevant to the solution he
or she may use this strategy to find more supportive
temporal landmarks. If the participant does not believe
the anchor is relevant, he or she can use the strategy to
exclude the current region from the solution. In one
comprehensive search, a participant began by
identifying an anchor: “So I'm looking for Dewdrop
Willowwind. So here's Dewdrop Willowwind
turning to face the camera.” Next, the participant
maps nearby lines of code: “And [CordFlamewand]
turn to face the camera. They turn to face the camera
and then they all move forward. So this is the moving
forward thing [in the video].” This second mapping
helped the participant validate the original mapping.

Exhaustive Search (11/14 users, 10/20 tasks, 2% of
searches): If the previously discussed strategies are
unsuccessful, participants may turn to less structured
and more desperate strategies. In an exhaustive search
the participant searches the entire recognized code
space (note: participants may not search some method
implementations because they do not recognize they
can). We observed two stages of exhaustive search. In
the first stage, participants search any editable method
associated with a target character. Failing the first
stage, a participant searches all editable methods
available regardless of whether they relate to any
landmarks or targets they are looking to find.

Not all search strategies are intended to generate a
solution. Two common fallback strategies are
intended to generate more potential search targets.
API Search (7/14 users, 8/20 tasks, 1% of searches)
occurs when a participant selects an object and scans
that object’s list of methods to identify new search
targets similar to their landmarks. Explorative Search
(8/14 users, 8/20 tasks, 3% of searches) is a last resort
search in which participants appear to randomly click
through the interface. Sometimes these random
explorations lead the participant to a piece of
information that helps the participant formulate a new
(productive) search.

4.3. Task Process Model Section (3)

The process of cycling between code and output
searches continued until a subject believed their

mappings correctly identified a reasonable approx-
imation of the responsible code region. As previously
indicated, most solutions are incorrect. Although there
are many reasons for incorrect solutions, three failures
appear frequently in this Task Process Model section:

Method Interpretation (13/14 users, 12/20 tasks):
Participants’ abilities to form correct mappings were
fundamentally tied to their interpretations of a
method’s behavior given its name and parameters. A
method can provide too many cues, too few cues or
inappropriate cues about its function. Missing or
misleading cues may cause a participant to
inappropriately store a landmark in the included or
excluded set of the Landmark-Mapping model.
Engebretson and Wiedenbeck call methods’ ability to
express their functionality role-expressiveness [7].

 Lack of Temporal Reasoning (10/14 users, 10/20
tasks): Failure to use temporal reasoning can cause
participants to search more code than necessary. They
may also fail to utilize operations that can increase the
size of their excluded landmark sets (thus reducing the
number of landmarks to map). By searching excess
code and keeping irrelevant landmarks, participants
may create false mappings. Finally, without temporal
reasoning a subject may not identify nearby landmarks
to verify the correctness of their initial mappings.

Temporal Reasoning Overuse and Ignoring
Constructs (13/14 users, 12/20 tasks): Temporal
reasoning cannot be naively applied to programs
containing constructs such as loops and concurrent
blocks or multiple threads of execution. Failure to
recognize the changing execution model caused
participants to arrive at faulty solutions by incorrectly
placing landmarks and mappings into the excluded or
included sets of the Landmark-Mapping model.

4.4. Task Process Model Section (4)

For a bounding task, finding a solution required
mappings for the first and last action observed hence
the transitions back from “Solution” to either “Code
Search” or “Output search”. Additionally, participants
frequently verified modification task solutions leading
to a higher success rate for modification tasks.

4.5. Task Process Model Section (5)

Not all searches or series of searches led to a clear
solution. In response to finding no mappings to their
landmarks, some subjects turned to Context Search
(9/14 users, 8/20 tasks, 1% of searches). In a context
search, the participant searches the output for actions
happening shortly before or after the target
functionality. In one case, a participant stated “I was
just gonna look again and see…what part in the movie
corresponds to …where the Horse is highlighted.”

The participant then identified landmarks immediately
before and after the indicated functionality.

Context search usage occasionally gave rise to a
common failure we call Magic Code (7/14 users,
15/20 tasks). Many participants correctly mapped the
temporally related landmarks identified through
context search. However, participants then failed to
find the original target near these newly identified
mappings and concluding: “it is in there, but I can’t
see it”. This conclusion produces an incomplete set of
mappings as users may not have mapped the target
functionality.

4.6. Relationship to Other Models

Ko et al. [16] studied expert navigation in code
maintenance tasks. They propose a model in which
developers search for relevant task information, relate
this information to previous knowledge to decide their
next step, and continue collecting relevant information
until they feel they have enough information to
implement a solution. Although Ko’s model applies to
expert programmers, we have found that non-
programmers use a similar high-level process. We
expand on the task process by suggesting the
Landmark-Mapping model as an abstraction to
describe how non-programmers collect and organize
the information they use to complete their task.

5. Discussion and Conclusions

Insight into how non-programmers search code can
inform the design of programming environments that
support users in utilizing and learning from found
code. While this study focused on participants using
Storytelling Alice, we believe the model, strategies,
and failures discussed apply to other domains. In
particularly domains where most program execution is
externally observable such as web sites, user
interfaces, and scriptable media authoring
environments. To this end, we offer the following
design guidelines.

5.1. Connect code to observable output

When users search code for an observed
functionality it is essential to help them interpret code
in terms of the observed functionality. We could have
alleviated our participants’ struggles with interpreting
code could by showing how the output changed when
a line of code executed. To support arbitrary code use
by non-programmers, we need to explore how best to
provide support in the programming environment that
enables users to correctly and quickly form mappings
between the code and output.

5.2. Help users reconstruct execution flow

When our participants encountered programs
containing programming constructs such as loops, do
togethers and method calls, they tended to either
interpret all statements as executing sequentially or
declare the execution flow incomprehensible.
Enabling users to correctly reason about the execution
flow can help them to employ temporal reasoning
effectively. This has the potential to drastically
improve users search efficiency. Often students learn
new vocabulary words through contextual clues as
they read. As non-programmers explore unfamiliar
code, there is an opportunity for programming
environments to scaffold users’ mental models and
reasoning about unfamiliar programming constructs’
behavior.

5.3. Provide interactions to fully navigate code

Participants in our study frequently struggled to
find all code relevant to a particular search.
Incomplete exhaustive searches and participants’
magic code creation provide evidence of this struggle.
Lacking code navigation affordances is particularly
disabling when users will be utilizing code they did
not create.

5.4 Help users use poorly constructed code

Programming environments have no control over
the properties of code users find on the internet. Yet,
lacking other supports, the structure and clarity of
code users download can have a profound impact on
their success. Programming environments enabling
non-programmers to utilize unfamiliar code must help
overcome difficulties associated with poorly designed
and written code. With an understanding of typical
usability problems in user created code, we can build
supports into programming environments that help
users to successfully navigate imperfect code. Users
are particularly affected by poorly chosen method
names. Interfaces enabling users to view details about
a method’s behavior at the point where that method is
invoked can increase the method’s information scent
and help users decide to explore it or not.

6. References

[1] C. Aschwanden and M. Crosby, "Code Scanning
Patterns in Program Comprehension," Proc. of HICSS, 2006.
[2] R. Brooks, "Towards a Theory of the Comprehension of
Computer Programs," International Journal of Man-
Machine Studies, vol. 18, pp. 543-554, 1983.
[3] M. S. Carver and S. C. Risinger, "Improving children's
debugging skills," in Empirical Studies of Programmers:
2nd Workshop., 1987, pp. 147-171.

[4] Committee on Science, Engineering and Public Policy,
Rising above the gathering storm: Energizing and
employing America for a brighter economic future.
Washington D.C.: The National Academies Press, 2007.
[5] A. Cox, M. Fisher, and P. O’Brien, "Theoretical
Considerations on Navigating Codespace with Spatial
Cognition," in Proc.of PPIG, 2005, pp. 92-105.
[6] M. Crosby, J. Scholtz, and S. Wiedenbeck, "The Roles
Beacons Play in Comprehension for Novice and Expert
Programmers," in Proc. of PPIG, 2002, pp. 58-73.
[7] A. Engebretson and S. Wiedenbeck, "Novice
comprehension of programs using task-specific and non-
task-specific constructs," in Proc. of VL/HCC, 2002, pp. 11-
18.
[8] M. Fisher, A. Cox, and L. Zhao, "Using Sex
Differences to Link Spatial Cognition and Program
Comprehension," in Proc. of ICSM, 2006, pp. 289-298.
[9] S. Fitzgerald, G. Lewandowski, R. McCauley, L.
Murphy, B. Simon, L. Thomas, and C. Zander, "Debugging:
Finding, Fixing and Flailing, a Multi-institutional Study of
Novice Debuggers," Computer Science Education, vol. 18,
pp. 93 - 116, 2008.
[10] R. Jeffries, "A Comparison of the Debugging Behavior
of Expert and Novice Programmers," Proceedings of AERA
annual meeting, 1982.
[11] I. R. Katz and J. R. Anderson, "Debugging: An Analysis
of Bug-Location Strategies," Human-Computer Interaction,
vol. 3, pp. 351 - 399, 1987.
[12] C. Kelleher, R. Pausch, and S. Kiesler, "Storytelling
alice motivates middle school girls to learn computer
programming," in Proc. of CHI, 2007, pp 1455-1464.
[13] C. Kissinger, M. Burnett, S. Stumpf, N.
Subrahmaniyan, L. Beckwith, S. Yang, and M. B. Rosson,
"Supporting End-user Debugging: What do users want to
know?," in Proc. of AVI, 2006, pp. 135-142.
[14] A. J. Ko and B. A. Myers, "Designing the Whyline: a
debugging interface for asking questions about program
behavior," in Proc. of CHI, 2004, pp. 151-158.
[15] A. J. Ko and B. A. Myers, "Debugging Reinvented:
asking and answering why and why not questions about
program behavior," in Proc. of ICSE, 2008, pp. 301-310.
[16] A. J. Ko, B. A. Myers, M. J. Coblenz, , and H. H. Aung,
"An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance
tasks," Trans. On Software Eng., vol. 32, pp. 971-987, 2006.
[17] A. J. Ko and B. Uttl, "Individual Differences in
Program Comprehension Strategies in Unfamiliar
Programming Systems," in Proc. of IWPC, 2003, pp. 175-
184.
[18] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector,
"Using Information Scent to Model the Dynamic Foraging
Behavior of Programmers in Maintenance Tasks," in Proc.
of CHI, 2008, pp. 1323-1332.
[19] S. Letovsky, "Cognitive Processes in Program
Comprehension," in Papers presented at the 1st Workshop
on Empirical Studies of Programmers, 1986, pp. 58-79.
[20] R. McCauley, S. Fitzgerald, G. Lewandowski, L.
Murphy, B. Simon, L. Thomas, and C. Zander, "Debugging:
a review of the literature from an educational perspective,"
Computer Science Ed., vol.18, pp. 67-92, 2008.

[21] R. Mosemann and S. Wiedenbeck, "Navigation and
Comprehension of Programs by Novice Programmers,"
Proc. of IWPC, pp. 79-88, 2001.
[22] M. Nanja and C. R. Cook, "An analysis of the on-line
debugging process," in Empirical Studies of Programmers:
2nd Workshop, 1987, pp. 172-184.
[23] N. Pennington, "Stimulus Structures and Mental
Representations in Expert Comprehension of Computer
Programs," Cognitive Psych., vol. 19, pp. 295-341, 1987.
[24] P. Pirolli and S. Card, "Information Foraging,"
Psychological Review, vol. 106, pp. 643-675, Oct 1999.
[25] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick,
M. Main, M. Durham, and M. Burnett, "Strat-egies and
behaviors of end-user programmers with interactive fault
localization," in Proc. of VL/HCC, 2003, pp. 15-22.
[26] M. P. Robillard, W. Coelho, and G. C. Murphy, "How
effective developers investigate source code: an exploratory
study," Trans. on Software Eng., vol. 30, pp. 889-903, 2004.
[27] C. Scaffidi, M. Shaw, and B. Myers, "Estimating the
numbers of End Users and End User Programmers," in
Proc. of VL/HCC, 2005, pp. 207-214.
[28] N. Subrahmaniyan, L. Beckwith, V. Grigoreanu, M.
Burnett, S. Wiedenbeck, V. Narayanan, K. Bucht, R.
Drummond, and X. Fern, "Testing vs. code inspection vs.
what else?: male and female end users' debugging
strategies," in Proc. of CHI, 2008, pp. 617-626.
[29] A. von Mayrhauser and A. M. Vans, "Hypothesis-driven
Understanding Processes during corrective maintenance of
large scale software," in Proc. of ICSM, 1997, pp. 12-20.
[30] S. Wiedenbeck, "Beacons in Computer Program
Comprehension," International Journal of Man-Machine
Studies, vol. 25, pp. 697-709, 1986.
[31] S. Wiedenbeck, "The Initial Stage of Program
Comprehension," International Journal of Man-Machine
Studies, vol. 35, pp. 517-540, 1991.
[32] S. Wiedenbeck and A. Engebretson, "Comprehension
Strategies of End-User Programmers in an Event-Driven
Application," in Proc. of VL/, 2004, pp. 207-214.
[33] J. Wong and J. I. Hong, "Making mashups with
marmite: towards end-user programming for the web," in
Proc. of CHI, 2007, pp. 1435-1444.

	1. Introduction
	2. Related Work
	2.1. Code Navigation
	2.2. Code Comprehension
	2.3. Novice Debugging

	3. Methods
	3.1. Storytelling Alice
	3.2. Instruments
	3.3. Study Sessions
	3.3.1. Study Task Types. The study included two types of tasks: bounding tasks and modification tasks.
	3.3.2. Task Completion. To ensure participants understood bounding and modification tasks we asked each subject to complete one task of each type in a practice Storytelling Alice program. After completing the two practice tasks, participants completed a series of experimental tasks. We generated the task series by randomizing the presentation order of the four programs and the five tasks for each program. The randomization was intended to prevent any ordering effects. Each participant completed as many tasks as he or she could during the allotted time for the study.

	3.4. Data
	3.5. Participants
	3.6. Analysis
	3.6.1. Searches. For each search, we coded beginning and ending times for the search, the search space and the participants’ search target. Searches could occur in four spaces: the video, the running program, the Storytelling Alice code pane, and other Storytelling Alice panes (e.g. object tree, object details, events).
	3.6.2. Landmarks. As users searched for specific functionality within an unfamiliar program, they often verbally referenced specific features in the output (the video or running program) or the program itself (code pane or other panes). For example, a participant might say, “The fish gets bigger and turns” while watching the output. We call these features landmarks as suggested by Cox [5] because the verbalizations are often coupled with code navigational logic (e.g., "The fish spins before he turns to face the camera").
	3.6.3. Other Data. We also transcribed participants’ statements about their progress or mental models and noted any solutions they generated.

	3.7 Error Analysis

	4. Results
	4.1. Task Process Model Section (1)
	4.2. Task Process Model Section (2)
	4.3. Task Process Model Section (3)
	4.4. Task Process Model Section (4)
	4.5. Task Process Model Section (5)
	4.6. Relationship to Other Models

	5. Discussion and Conclusions
	5.1. Connect code to observable output
	5.2. Help users reconstruct execution flow
	5.3. Provide interactions to fully navigate code
	5.4 Help users use poorly constructed code

	6. References

